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a b s t r a c t

Elastic network models in their different flavors have become useful models for the
dynamics and functions of biomolecular systems such as proteins and their complexes.
Perturbation to the interactions occur due to randomized and fixated changes (in molecu-
lar evolution) or designed modifications of the protein structures (in bioengineering).
These perturbations are modifications in the topology and the strength of the interactions
modeled by the elastic network models. We discuss how a naive approach to compute
properties for a large number of perturbed structures and interactions by repeated diago-
nalization can be replaced with an identity found in linear algebra. We argue about the
computational complexity and discuss the advantages of the protocol. We apply the pro-
posed algorithm to the acetylcholinesterase, a well-known enzyme in neurobiology, and
show how one can gain insight into the ‘‘breathing dynamics” of a structural funnel neces-
sary for the function of the protein. The computational speed-up was a 60-fold increase in
this example.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The understanding of the structure and the dynamics of biomolecular systems is of great importance for molecular bio-
physics, biomolecular engineering, molecular biology, and molecular evolution. The direct simulation by sophisticated,
atomistic molecular dynamics simulations is the most advanced technique available. Due to the high computational costs
this approach does not offer the opportunity to deal with more than just a few variants of a molecular system. However,
consideration of large number of variants is of great importance in e.g. biomolecular design, where several molecular set-
ups have to be compared to each other, or in molecular evolution, where hundreds to thousands of sequence mutants need
to be superimposed onto a molecular structure and the ramifications of sequence changes to be quantified.

Several approximation schemes exist to reduce the computational resource demand. The most basic protocols consist of a
harmonic approximation of the physical potential and the avoidance of integrating equations of motion. These models are
known as elastic network models (ENMs).

ENMs for biomolecular systems and proteins in particular were introduced in biophysics some twenty years ago by the
seminal work of Tirion [1]. Since then numerous applications [2–4] and improvements [5–8] were suggested in the physics
and chemistry literature. The most desirable property – low computational complexity – of these models made them a prime
tool to understand fluctuations around the native state. At the same time this simplicity puts serious restrictions on the
applicability of these models [9]: insight into folding and refolding events are in general not possible.
. All rights reserved.
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The application of these models range from annotation of molecular evolution [10] to questions in bioengineering [11].
Conceptually ENMs are reduced variants to the well-known normal mode analysis in molecular dynamics packages [12–14].

Here we want to use ENMs to quantify the importance of individual contacts within a protein structure. To this end we
introduce a simple ENM. The impact the existence or the disappearance of a residue–residue contact has on the dynamics
around the native state can be investigated in a thought-experiment: we can compute the difference between the original
system and a system, in which the particular contact under scrutiny is ‘switched off’, by computing in both set-ups the full
dynamics and compare them by e.g. matrix norms. For thousands of contacts this procedure becomes, however, time con-
suming and therefore we set out to increase the efficiency of such massive thought experiments.

As a demonstration of the power of (a) the general idea of ‘switched off’ contacts and (b) the computational efficiency of
the proposed algorithm we apply the method to the acetylcholinesterase (AChE), an important enzyme in e.g. neurobiology,
for which a detailed understanding of the molecular evolution and its ramification in physical space is still lacking.
2. Elastic network models (ENMs)

Elastic network models typically introduce two reductions in describing the molecular mechanics: (1) amino acids are
represented as beads placed at the respective Ca positions of the experimental protein structure; (2) the interactions are
assumed to be local only and of harmonic origin. These assumption can be justified in the region of small fluctuations
around the native state. Here a Taylor expansion of any interaction potential would necessary lead to leading harmonic
terms. The locality - which is implemented by allowing amino acids to interact only within a cutoff distance - follows
from the observation that local packing density determines protein fluctuations to a large extent. The reduced represen-
tation assumes that effects from side-chain atoms etc. can be ‘‘integrated out”, that is, absorbed in effective force con-
stants [15].

2.1. Gaussian network model

We focus here on the Gaussian Network Model (GNM) by Haliloglu et al. [16], Micheletti [17], and Erman [18], with a
potential energy given by
HGNM ¼
c
2

XN

i;j

Cij ðDRj � DRiÞ2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼:DRij

264
375 ð1Þ
where the DRi are displacements from the equilibrium positions in the native state and consequently DRij is the relative dis-
tance the two amino acids i and j are separated in a given configuration. c is the uniform interaction strength and Cij is the
Kirchhoff matrix
Cij ¼

0; if i – j and Rij > Rc

�1; if i–j and Rij 6 Rc

�
PN

j¼1;j – i
Cij; if i ¼ j

8>>><>>>:

where the cutoff distance Rc was set to 13Å throughout this study.

2.2. Observables from ENMs

We first need to note that the model set-up provides for translational symmetry. This effectively leads to a singular Kir-
chhoff matrix C with one eigenvalue kN = 0. As we only need to deal with a physically meaningful sub-space of movements
we need to omit this particular eigenvalue/-vector from further consideration. The eigensystem of C must therefore be ob-
tained by a singular value decomposition [19] (SVD) and not by direct eigensystem methods.

The covariance of residue motions can be computed as
Cij :¼ hDRi � DRji ¼
3kBT

c
eC�1

ij
where eC�1 is the Moore–Penrose [20,21] pseudo-inverse of C. The pseudo-inverse needs to be computed due to the above
mentioned singularity of the original Kirchhoff matrix C.

Assuming the eigensystem of C to be sorted in descending order according to the singular values kk then we obtain for the
covariance matrix entries
Cij ¼
3kBT

c
XN�1

k¼1

1
kk
½~uk~uT

k �ij
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here ½~uk~uT
k �ij is the (i, j) entry of the matrix composed of the singular vectors~uk of C and their respective transposed. The sum-

mation of a reduced spectral decomposition implements then the Moore–Penrose pseudo-inverse eC�1 of C.
kB and T are the Boltzmann constant and the temperature, respectively. In the following we will set 3kBT

c ¼ 1 for conve-
nience. The crystallographic temperature factor for residue i is given as Bi ¼ 8p2kBT

c ðeC�1Þii ¼ 8p2

3 Cii.

3. Perturbation of ENMs

What happens if we want to investigate the influence of a modified interaction onto the overall dynamics? The full infor-
mation ENMs can provide on the dynamics of systems, they are applied to, is contained in the covariance matrix C. Temper-
ature factors and thermodynamic properties follow solely from knowledge of C within this framework.

Therefore we can restrict our analysis to the changes induced in C upon changes in the Kirchhoff matrix C. Such modi-
fications in the Kirchhoff matrix might be due to conscious processes such as molecular design efforts in drug development.
They might also occur during evolutionary changes such as point mutations that result in a (locally) changed amino acid
sequence.

To quantify changes in the covariance matrix C we use – as in a previous study [10] – a matrix norm between the original
molecular Corig and the modified system Cmod. We will restrict our analysis to the well-known Frobenius norm

kAkF :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

ijA
2
ij

q
for a matrix A. In our case the Frobenius norm upon molecule modification forig?mod becomes
forig!mod ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i;j¼1

½Corig � Cmod�2ij

vuut

In principle this can be easily achieved by (1) changing the Kirchhoff matrix, (2) applying a SVD, and (3) reconstructing

the pseudo-inverse as above. However, if we have a large number of changes to investigate or an approximated continuum of
interaction strengths this approach becomes prohibitively expensive. This conceptual problem cannot be solved by increased
efficiency in the SVD procedure [22] alone. Instead we propose a new approach.

3.1. An efficient implementation

The effect of a change in the original Kirchhoff matrix Corig to the covariance matrix of the modified system Cmod is easily
obtained from the Woodbury matrix identity [23]:
ðAþ UWVÞ�1 ¼ A�1 � A�1UðW�1 þ VA�1UÞ�1VA�1
for general matrices A, U, W, V with sizes N � N, N �M, M �M, and M � N, respectively.
We define D :¼ Cmod � Corig and find for physical forces without loss of generality always a representation D = UWV for

appropriately sized matrices U, V, W. Then we obtain from the Woodbury matrix identity for the covariance matrix of the
modified system
Cmod ¼
3kBT

c
eC�1

mod ¼
3kBT

c
Corig þ D
� ��1 ¼ 3kBT

c
eC�1

orig � eC�1
origUðW�1 þ V eC�1

origUÞ�1V eC�1
orig

h i
ð2Þ
Here a matrix eC�1 is the Moore–Penrose pseudo-inverse of C. If now the size M of the matrix W is just a fraction the size of C,
that is the number of amino acids N, it is computationally less expensive to apply this approach compared to finding the
eigensystem every single time from scratch upon changes in the Kirchhoff matrix as in the naive approach. The diagonaliza-
tion/inversion of the smaller matrices is much less costly: typically the readily available implementation of the SVD scale
approximately with the third power of the system size O(N3). If we repeat this step n times, the overall CPU time scales like
tnaive � O(n N3).

Using Eq. (2) we apply the full SVD once (O(N3)) and n � 1 times we apply the more efficient scheme which involves some
matrix-multiplications and SVDs of a much smaller matrix. Each of these steps has complexity
O(M3 + M2 + 2 �M2N + 4 � N2M). Thus we observe
tnew � O N3 þ nM3 þ nM2 þ 2n �M2N þ 4n � N2M
� �
in a slightly adopted O-notation and the approximation n � n � 1 for large n. Clearly we see that for M as just a fraction of N
this algorithms allows for much larger n for a restricted computational resource. The estimate on the computational effort
requires the ‘‘correct” order of matrix operations. If applied in the wrong order, the algorithm can perform worse than the
naive approach. We have to store the reference matrix eC�1

orig, thus the memory demands are always higher in this algorithm.
The Woodbury matrix identity is a rigorous result from linear algebra. Therefore our protocol does not introduce any

approximation beyond the one of the GNM model. In fact the results of repeated SVDs and the application of the Woodbury
identity are exactly the same. For the application test – described in the next section – we found the method also to be
numerical robust. The changes in computed observables (temperature factors and covariance matrix entries) between re-
peated SVDs and the Woodbury-based algorithm was always smaller than 10�6 in the example.
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3.2. A special case

In the case that U and V in Eq. (2) are of size N � 1, and thus M = 1, then the Woodbury matrix identity reduces to the better
known Sherman–Morrison formula [24]. This situation occurs if we only change the interaction between one and only one pair
of amino acids. Then only the respective entries in the symmetric Kirchhoff must be changed and the diagonal entry updated. It
follows for the vectors~u and~v (which are the columns of U and V):
1 sam
Cmod ¼
3kBT

c
eC�1

mod ¼
3kBT

c
½Corig þ D��1 ¼ 3kBT

c
eC�1

orig þ
eC�1

orig
~u~vT eC�1

orig

1þ~vT eC�1
orig
~u

" #
ð3Þ
If we want to modify the interaction for a pair of residues i and j by an amount d then the difference in the Kirchhoff matrix is
Dkl ¼
�d; for ðk ¼ i ^ l ¼ jÞ _ ðk ¼ j ^ l ¼ iÞ
�d; for k ¼ l ¼ i _ k ¼ l ¼ j

0; otherwise

8><>: ð4Þ
This can be e.g. achieved by the vectors~u ¼ ð. . . ; d; . . . ; d; . . . ÞT and ~v ¼ ð. . . ;1; . . . ;�1; . . . ÞT with the entries at positions i and
j.

Here – adopting the notion of above – we have tnew � O(N3 + 5nN2 + nN). The break even point for application of the pro-
posed method is therefore below any substantial protein size. It is therefore almost always better to implement our more
elaborated scheme. From Corig we can then compute all other values as described above. These analysis steps are independent
of the algorithm used to obtain Corig and therefore out of the focus of our present work.

3.3. Overview of the protocol

For a GNM potential HGNM ¼ c
2

PN
i;jCijðDRj � DRi|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼:DRij

Þ2
264

375 with DRi displacements from the equilibrium positions, DRij the rel-

ative distance the two amino acids i and j and Cij the Kirchhoff matrix, one computes the covariance matrix entries Cij by a

Moore–Penrose pseudo-inverse Cij :¼ hDRi � DRji ¼ 3kBT
c

PN�1
k

1
kk
~uk~uT

k

� �
ij where the eigenvectors ~uk and the eigenvalues kk are

taken from an initial singular value decomposition of the original, non-perturbed system.
In our protocol we compute the importance a contact between residues (i, j) has for the dynamics of the molecule by the

Frobenius norm between the covariance matrices of the full and a set-up, which lacks this particular contact

forig!mod ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i;j¼1 Corig � Cmod
� �2

ij

q
.

To compute these covariance matrices one can employ the Woodbury matrix identity and start from the covariance ma-

trix for the full system: Cmod ¼ 3kBT
c

eC�1
orig þ

eC�1
orig

~u~vTeC�1
orig

1þ~vTeC�1
orig

~u

" #
. For a contact (i, j) we set here ~u :¼ �êi and ~v :¼ êj, with êi and êj unit

vectors with an entry of one in position i and j, respectively, and all other entries set to zero.

4. An example: AChE

In most eukaryotes acetylcholinesterase (AChE, EC 3.1.1.7) degrades by hydrolytic activity the neurotransmitter acetylcho-
line with a high turnover of some 1000–10,000 reactions per second near the diffusion limit [25]. Inhibitors of AChE include
snake venom and chemical weapons [26] such as organophosphates. These substances undermine the enzymatic activity of
AChE and thus acetylcholine accumulates in the brain with fatal consequences up to asphyxiation. At the same time patient
of e.g. Alzheimer’s disease are treated with lower doses of AChE-inhibitors [27]. This makes AChE an interesting protein for
studying its structure and mechanics.

The enzymatic action occurs in a very narrow gorge, therefore substantial breathing motions of the gorge forming residues
are necessary for entering of substrates and leaving of products.

Owing its importance several entries for AChE in the protein data bank exist. We have chosen the entry 2c5g [28] for T.
californica, which contains also N-acetyl-D-glucosamine, triethylene-glycol, and 2-(trimethylammonium)ethyl-thiol.

We extracted the Ca positions and selected always the first alternative location if two were present. The structure has 532
amino acids and can thus be categorized in the class of large proteins for which a detailed insight by atomistic molecular dynam-
ics for hundreds of variations – even with modern compute clusters – cannot be gained. It constitutes therefore a prime example
for our new method.

4.1. Quality of B-factors in the GNM

To get a first impression of the reliability and accuracy of the GNM for AChE we applied the full method to the pdb-struc-
ture 1MAH and compare to results from a previous full atomistic molecular dynamics study [29].1 We found for the computed
ple values extracted from Fig. 4 in ref. [29].
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Fig. 1. Scatter plot of the Frobenius norms for all 10,872 switched-off contacts for the AChE. On the x axis we plot the Frobenius norm for the difference of
the covariances matrices C restricted to the index set I, while the y axis shows the Frobenius norm for the full 532 amino acid covariances matrices. The gap
along the x axis and the overall magnitude of 10�8 for the position of the broken line suggests that values to the left are below numerical accuracy and must
be regarded as zero – thus no observable change in the molecular mechanics.
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B-factors of reference [29] a correlation to the experimental B-factors in the pdb-file of just rP = 0.017 (Pearson) and rS = 0.008
(Spearman), while with the GNM approach we obtained rP = 0.49 and rS = 0.49. At least for the temperature factors these find-
ings suggest a higher quality. Most likely these results will not hold for contemporary molecular dynamics studies with larger
sampling times. Most molecular dynamics studies are done, however, with additional ligands and binding partners [30–33] – a
situation to which the GNM is most likely not applicable. We therefore refrained from comparing to these studies.

4.2. Fluctuation changes in the active site of AChE

The substrate acetylcholine (ACh) interacts with the amino acids Trp84, Glu199, and Phe330 and the serine-hydrolase
catalytic triad of Ser200–His440–Glu327. In our analysis we will extract just the covariances for these residues, eventually
filtering C for these indices.

To quantify the changes in such covariances sub-matrices, computing the Frobenius norm of CðIÞmod with respect to one of
the starting, reference configuration Corig was previously suggested [10]. Here CðIÞmod stand for the covariances matrix of a mod-
ified set-up and then reduced to the indices in I.

We will stick to this idea and compute first CðIÞorig as a reference matrix. I is the index set {84,199,200,327,330,440} from
above. We then modify the Kirchhoff matrix according to Eqs. (3) and (4) and compute Cmod by these equations. Finally we
compute the Frobenius norm for the restriction set I
f ðIÞ :¼ CðIÞorig � C
ðIÞ
mod

��� ���
F
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2I

jCorig;i � Cmod;ij2
s

We decided to restrict our illustration here to a ‘‘switch-off” scenario: we switch off one contact after another and quantify
the influence of such an interaction on the residues in I by the respective f. To this end we set d = �1 in the definition of~u for
each amino acid pair (i, j) within the distance Rc = 13Å one at a time, thus ‘‘switching” the contact ‘‘off”.

Therefore the approach consists of a two-folded loop over all contacting amino acid pairs (i, j). Within the loop we use a
special case of the Woodbury identity (Section 3.1), namely the special case of Eq. (4), that can be reduced to the special case
for just one contacting pair (i, j) with~u :¼ �êi and ~v :¼ êj (Section 3.3). For each contact pair we then compute the Frobenius
norm between the original, full system and the modified one.

At this Rc we found 10,872 contacts that need to be sampled. In Fig. 1 we show the Frobenius norms kCorig � CmodkF for the
full system of all amino acids and the one restricted to I. As is clear from the scattered points the Frobenius norms show no
dependency. This points to need to formulate the research objective stringent: the overall change within the full molecule is
much different than for the restricted ‘‘window of interest” I. Focusing on the full molecule might mask the relevant changes
in the gorge region (I).

We will now focus on the Frobenius norm restricted to I. We filtered the most important influences by extracting those
interacting amino acid pairs, that showed upon switch-off the largest Frobenius norm with respect to the reference system.
The most important eight interactions are shown in Table 1. We superimpose these pairings onto the structure of AChE and
show this in Fig. 2. Interestingly all of them involve the amino acid no. 84, which is also a member of I. The biggest influence



Table 1
The ids of most important interacting amino acid pairs in the AChE structure. The importance reveals itself by comparable larger values of the Frobenius norm f
between the full system and the one in which this contact is switched off. We have filtered for those Frobenius norms f with f > 5.7 � 10�4. We omitted every
pair that included two elements of I as changes due to interactions within I are obviously relevant for the dynamics of members of I.

73 M 84 74 M 84 75 M 84 76 M 84 77 M 84 78 M 84 79 M 84 82 M 84

Fig. 2. The structure of acetylcholinesterase (pdb code 2c5g) in red. The gorge of the enzymatic center is shown in blue. The orange spheres represent the Ca

positions of the residues contacting residue no. 84 (green), which were found to be most important in Table 1. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

7314 K. Hamacher / Journal of Computational Physics 229 (2010) 7309–7316
stems therefore from the flexible loop at the entrance of the gorge. This loop is part of the bigger Omega loop, which was
shown to be important for inhibitor binding in the AChE of M. musculus [34].

Interestingly we found in a preliminary BLAST [35] search an unusually high sequence variability in this region among
different species – ranging from C. carpio (common carp), over Danio rerio (zebrafish), to X. laevis (African frog) and eventu-
ally M. musculus (mouse).

This portion of the gorge entrance plays some role – as can be seen in the structure 2c5g – in the transport of the product
2-(trimethylammonium)ethyl-thiol. Whether this is related to the above mentioned sequence variability or other reasons for
the evolutionary interesting observation on high sequence variability will be discussed in a future paper, which will not fo-
cus on methodology.
4.3. Timings

On a Mac OS X 10.5 with an Intel 2.4 GHz Duo core processors with 4 GB RAM the full sampling for the 10,872 switch-off
settings took just 143 s. The full sampling by the naive algorithm with repeated pseudo-inverse computation took consid-
erably longer, 8480 s. Although absolute timings are just indications on performance improvements, the �60 fold speed-
up is striking.
5. Conclusions

In this study we have implemented an efficient algorithm to investigate changes in topology and interaction strength of
elastic network models for biomolecular systems.

The speed-up compared to a naive approach for sampling a range of interactions in the acetylcholinesterase was close to
60. Theoretical arguments on the scaling of the computational effort point in the same direction.

In a first application we scanned the contacts within the acetylcholinesterase structure of T. californica for important con-
tributions to the flexibilities and fluctuations in the gorge region of this molecule. We found a signal for a portion of the so
called Omega loop, which is known for its contribution to inhibitor binding. This observation prompts for the speculation,
that upon binding the inhibitor the AChE undergoes changes in its dynamics, which in turn might prevent the necessary
‘‘breathing” motion of the gorge to accommodate its native substrate. Detailed investigations on this will follow.
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Generally speaking, with the new approach the design of particular dynamical and functional features by small, local
modifications of the contact topology and interaction strength seems within reach. Combining this approach for the assess-
ment of functional and dynamical ramifications of protein modifications with efficient optimization schemes [36–39] is
therefore the next step we will undertake.

For general modifications of the Kirchhoff matrix using the Woodbury identity might not lead to any improvements in the
computational efficiency. However, global changes in the Kirchhoff matrix are typically not done as this would imply a very
different protein structure (as the contact map directly determines with the Kirchhoff matrix). In these cases with substan-
tial modifications, where the number of effect residues is of the same order as the overall number of residues in the molecule,
it is questionable whether elastic network models make sense at all. Most likely a significant change in the contact map cor-
responds to a protein structure, which is not even a local minimum of its free energy and thus the harmonic approximation
implicitly presupposed by elastic network models is invalid.

One might, however, need such global changes when investigating the effects of mutations in traditional normal mode
analysis using force-fields like AMBER or CHARMM. For an exact mathematical treatment the above procedure would not
lead to an increase in performance as all matrix entries need to be modified. Therefore the matrices to be dealt with are
as large as the starting matrix. However, in the event that the resulting entries in the respective Hessians do not deviate
too much it might be possible to focus only on changes up to certain threshold, effectively dealing only with small sized
matrices V, U, and W in the Woodbury identity of Eq. (2) again. This will be investigated in a forthcoming study.
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